New Intel/UEFI whitepaper: Establishing the Root of Trust

https://twitter.com/Intel_UEFI/status/773597835467956224

Click to access UEFI%20RoT%20white%20paper_Final%208%208%2016%20%28003%29.pdf

Vincent Zimmer and Michael Krau of Intel have written a new whitepaper for the UEFI Forum: “Establishing the root of trust”.

The first step in securing a computing device – from a simple embedded device to a supercomputer and everything in between – is to ensure that it can start up under the following conditions:
– It is operating as expected
– All the firmware needed to run the system is intact
– It has not been tampered with in any way

As described in the first white paper in this series, Understanding the Chain of Trust and Its Vital Role in Keeping Computing Systems Secure, the UEFI specification includes a mechanism for ensuring the integrity and security of firmware (the all-important link between the hardware and the operating system) as a system starts up. This mechanism is called Secure Boot and uses public key cryptography to validate that each piece of firmware has been digitally signed and is therefore unmodified as the system starts up. In a chain of trust, each piece of firmware must be digitally signed before it can start up. Once one piece of code has been validated, it can then validate the next section and so on until the system is fully booted and control handed over to the operating system. But how does that chain get started? While difficult, it would be possible for an attacker to inject malicious attack code of some sort prior to start of the chain of trust to gain low-level and nearly undetectable control over the system. To prevent this, the chain of trust requires a strong foundation. In modern systems, this is known as the root of trust. A root of trust, one that can be counted on to anchor the chain of trust in the face of the most determined attackers, can be established in a number of ways. The most secure approaches use some form of an unchangeable section of hardware to validate the initial keyed signature, but there are a number of effective approaches. Ultimately it comes down to the level of security you’re comfortable with and an understanding of the approach used to establish the root of trust. This white paper looks at several common methods for establishing a root of trust as the basis for the UEFI Secure Boot process. […]

LinuxCon Europe UEFI Mini-Summit presentations available

Earlier this month, the UEFI Forum recently had a “Mini-Summit” at LinuxCon Europe. The presentations are now available online (so far just the slides, unclear if A/V will show up on Youtube later):

UEFI Mini-Summit at LinuxCon Europe: October 7, 2015

* UEFI Forum Update and Open Source Community Benefits – Mark Doran (Intel)
* What Linux Developers Need to Know About Recent UEFI Spec Advances – Jeff Bobzin (Insyde Software)
* LUV Shack: An Automated Linux Kernel and UEFI Firmware Testing Infrastructure – Matt Fleming (Intel)
* Goodbye PXE, Hello HTTP Boot – Dong Wei (HP)
* UEFI Development in an Open Source Ecosystem – Michael Krau (Intel)

More information (about halfway down the page, past the Youtube section):

http://www.uefi.org/learning_center/presentationsandvideos

 

UEFI at ELCE

The Embedded Linux Conference Europe (ELCE) is happening in October. There’s a set of UEFI talks happening at the event:

UEFI Forum Update and Open Source Community Benefits, Mark Doran

Learn about the recent UEFI Forum activities and the continued adoption of UEFI technology. To ensure greater transparency and participation from the open source community, the Forum has decided to allow for public review of all specification drafts. Find out more about this new offering and other benefits to being involved in firmware standards development by attending this session.   

What Linux Developers Need to Know About Recent UEFI Spec Advances, Jeff Bobzin

Users of modern client and server systems are demanding strong security and enhanced reliability. Many large distros have asked for automated installation of a local secure boot profile. The UEFI Forum has responded with the new Audit Mode specified in the UEFI specification, v2.5, offering new capabilities, enhanced system integrity, OS recovery and firmware update processes. Attend this session to find out more about the current plans and testing schedules of the new sample code and features.

LUV Shack: An automated Linux kernel and UEFI firmware testing infrastructure, Matt Fleming

The Linux UEFI Validation (LUV) Project was created out of necessity. Prior to it, there was no way to validate the interaction of the Linux kernel and UEFI firmware at all stages of the boot process and all levels of the software stack. At Intel, the LUV project is used to check for regressions and bugs in both eh Linux kernel and EDK2-based firmware. They affectionately refer to this testing farm as the LUV shack. This talk will cover the LUV shack architecture and validation processes.

The Move from iPXE to Boot from HTTP, Dong Wei

iPXE relies on Legacy BIOS which is currently is deployed by most of the world’s ISPs. As a result, the majority of x86 servers are unable to update and move to a more secure firmware platform using UEFI. Fortunately, there is a solution. Replacing iPXE with the new BOOT from HTTP mechanism will help us get there. Attend this session to learn more.

UEFI Development in an Open Source Ecosystem, Michael Krau, Vincent Zimmer

Open source development around UEFI technology continues to progress with improved community hosting, communications and source control methodologies. These community efforts create valuable opportunities to integrate firmware functions into distros. Most prevalent UEFI tools available today center on chain of trust security via Secure Boot and Intel® Platform Trust Technology (PTT) tools. This session will address the status of these and other tools. Attendees will have the opportunity to share feedback as well as recommendations for future open UEFI development resources and processes.

UEFI aside, there’s many other presentations that look interesting, for example:

Isn’t it Ironic? The Bare Metal Cloud – Devananda van der Veen, HP
Developing Electronics Using OSS Tools – Attila Kinali
How to Boot Linux in One Second – Jan Altenberg, linutronix GmbH
Reprogrammable Hardware Support for Linux – Alan Tull, Altera
Measuring and Reducing Crosstalk Between Virtual Machines – Alexander Komarov, Intel
Introducing the Industrial IO Subsystem: The Home of Sensor Drivers – Daniel Baluta, Intel
Order at Last: The New U-Boot Driver Model Architecture – Simon Glass, Google
Suspend/Resume at the Speed of Light – Len Brown, Intel
The Shiny New l2C Slave Framework – Wolfram Sang
Using seccomp to Limit the Kernel Attack Surface – Michael Kerrisk
Tracing Virtual Machines From the Host with trace-cmd virt-server – Steven Rostedt, Red Hat
Are today’s FOSS Security Practices Robust Enough in the Cloud Era – Lars Kurth, Citrix
Security within Iotivity – Sachin Agrawal, Intel
Creating Open Hardware Tools – David Anders, Intel
The Devil Wears RPM: Continuous Security Integration – Ikey Doherty, Intel
Building the J-Core CPU as Open Hardware: Disruptive Open Source Principles Applied to Hardware and Software – Jeff Dionne, Smart Energy Instruments
How Do Debuggers (Really) Work – Pawel Moll, ARM
Make your Own USB device and Driver with Ease! – Krzysztof Opasiak, Samsung
Debugging the Linux Kernel with GDB – Peter Griffin, Linaro

http://events.linuxfoundation.org/events/embedded-linux-conference-europe/program/schedule