Uncategorized

Inception: hacking tool exploiting PCI-based DMA

Inception has been around since at least 2014, but I just noticed it. 😦

Inception is a physical memory manipulation and hacking tool exploiting PCI-based DMA. The tool can attack over FireWire, Thunderbolt, ExpressCard, PC Card and any other PCI/PCIe interfaces. Inception aims to provide a relatively quick, stable and easy way of performing intrusive and non-intrusive memory hacks against live computers using DMA. Inception’s modules work as follows: By presenting a Serial Bus Protocol 2 (SBP-2) unit directory to the victim machine over a IEEE1394 FireWire interface, the victim operating system thinks that a SBP-2 device has connected to the FireWire port. Since SBP-2 devices utilize Direct Memory Access (DMA) for fast, large bulk data transfers (e.g., FireWire hard drives and digital camcorders), the victim lowers its shields and enables DMA for the device. The tool now has full read/write access to the lower 4GB of RAM on the victim. Once DMA is granted, the tool proceeds to search through available memory pages for signatures at certain offsets in the operating system’s code. Once found, the tool manipulates this code. For instance, in the unlock module, the tool short circuits the operating system’s password authentication module that is triggered if an incorrect password is entered. […] However, vendors generally dismiss DMA attacks as a non-issue, which I hope that the awareness that this tool generates will change. Users deserve secure devices, even when attackers gain physical access.[…]

https://github.com/carmaa/inception
http://www.breaknenter.org/projects/inception/
http://www.breaknenter.org/2014/09/inception-metasploit-integration/

Standard
Uncategorized

Dmytro on Apple PCI-E Thunderbolt

Standard
Uncategorized

Dmytro on PCI-E/SMM vulnerability

Dmytro has an interesting 6-part twitter post on PCI-e security:

Standard
Uncategorized

AGESA update info from AMD

[…]Beginning this month, as we promised to you, we began beta testing a new AGESA (v1.0.0.6) that is largely focused on aiding the stability of overclocked DRAM (>DDR4-2667). We are now at the point where that testing can begin transitioning into release candidate and/or production BIOSes for you to download. Depending on the QA/testing practices of your motherboard vendor, full BIOSes based on this code could be available for your motherboard starting in mid to late June. Some customers may already be in luck, however, as there are motherboards—like my Gigabyte GA-AX370-Gaming5 and ASUS Crosshair VI—that already have public betas.
[…]
If you’re the kind of user that just needs (or loves!) virtualization every day, then AGESA 1.0.0.6-based firmware will be a blessing for you thanks to fresh support for PCI Express Access Control Services (ACS). ACS primarily enables support for manual assignment of PCIe graphics cards within logical containers called “IOMMU groups.” The hardware resources of an IOMMU group can then be dedicated to a virtual machine. This capability is especially useful for users that want 3D-accelerated graphics inside a virtual machine. With ACS support, it is possible to split a 2-GPU system such that a host Linux® OS and a Windows VM both have a dedicated graphics cards. The virtual machine can access all the capabilities of the dedicated GPU, and run games inside the virtual machine at near-native performance.[…]

https://community.amd.com/community/gaming/blog/2017/05/25/community-update-4-lets-talk-dram

http://www.tomshardware.com/news/amd-agesa-firmware-update-motherboard,34525.html

 

Standard