Exploiting Intel DRAM

Reverse Engineering Intel DRAM Addressing and Exploitation
Peter Pessl, Daniel Gruss, Clémentine Maurice, Stefan Mangard

In this paper, we present a method to reverse engineer DRAM addressing functions based on a physical bus probing. Second, we present an automatic and generic method to reverse engineer DRAM addressing functions merely from performing a timing attack. This timing attack can be performed on any system without privileges and even in virtual machines to derive information about the mapping to physical DRAM channels, ranks and banks. We reversed the complex adressing functions on a diverse set of Intel processors and DRAM configurations. Our work enables side-channel attacks and covert channels based on inner-bank row conflicts and overlaps. Thus, our attack does not exploit the CPU as a shared resource, but only the DRAM that might even be shared across multiple CPUs. We demonstrate the power of such attacks by implementing a high speed covert channel that achieves transmission rates of up to 1.5Mb/s, which is three orders of magnitude faster than current covert channels on main memory. Finally, we show how our results can be used to increase the efficiency of the Rowhammer attack significantly by reducing the search space by a factor of up to 16384.