Intel has updated their Control-flow Enforcement Technology (CET) spec.
Click to access control-flow-enforcement-technology-preview.pdf
Intel has updated their Control-flow Enforcement Technology (CET) spec.
Click to access control-flow-enforcement-technology-preview.pdf
http://blogs.intel.com/evangelists/2016/06/09/intel-innovating-stop-cyber-attacks/
https://forums.grsecurity.net/viewtopic.php?f=7&t=4490
The GRSecurity post has a few more links as well:
[…]
Full disclosure: we have a competing production-ready solution to defend against code reuse attacks called RAP, see [R1], [R2]. RAP isn’t tied to any particular CPU architecture or operating system, and it scales to real-life software from Xen to Linux to Chromium with excellent performance.
[…]
Conclusion
In summary, Intel’s CET is mainly a hardware implementation of Microsoft’s weak CFI implementation with the addition of a shadow stack. Its use will require the presence of Intel processors that aren’t expected to be released for several years. Rather than truly innovating and advancing the state of the art in performance and security guarantees as RAP has, CET merely cements into hardware existing technology known and bypassed by academia and industry that is too weak to protect against the larger class of code reuse attacks. One can’t help but notice a striking similarity with Intel’s MPX, another software-dependent technology announced with great fanfare a few years ago that failed to live up to its many promises and never reached its intended adoption as the solution to end buffer overflow attacks and exists only as yet another bounds-checking based debugging technology.
https://twitter.com/aionescu/status/741035301246783488
Intel release new technology specifications to protect against ROP attacks
By Baiju Patel on June 9, 2016
“Intel has a long history of working with the software community and making strides in strengthening protections of operating systems and software running on modern computer systems. As these protections came into effect, adversaries started looking for creative alternatives to bypass these protections, Return Oriented Programming (also known as ROP) and Jump Oriented Programming (also known JOP) are two such techniques that has been gaining popularity. ROP or JOP attacks are particularly hard to detect or prevent because the attacker uses existing code running from executable memory in a creative way to change program behavior. What makes it hard to detect or prevent ROP/JOP is the fact that attacker uses existing code running from executable memory. Many software-based detection and prevention techniques have been developed and deployed with limited success.
Intel and Microsoft recognized the seriousness of ROP attacks as well as the difficulty in developing the means to protect from ROP/JOP. Together, we considered over ten technology innovations to address these emerging threats over last 7 years and narrowed it down to the CET specification for x86/x64 architecture to make significant advances in addressing the ROP threat. Based on prior experience with defining instruction set extensions, and enabling challenges associated with a new ISA, we set goals to have an ISA for ROP/JOP prevention that is transparent to most well designed/implemented software requiring minimal to no changes; yet allow opt out capability for SW that requires changes. We also wanted to make sure that the solution is applicable to not just applications, but also to operating system kernels, and is beneficial to SW written using most programming languages. We also wanted to ensure that software enabled for CET works on legacy platforms without changes (albeit with no security benefits). Finally, and most importantly, we wanted to address all known ROP/JOP attacks.
While we include a brief description of CET here, there is no substitute for careful reading of the complete specification. Here we highlight two key aspects of ISA to get you started, namely, shadow stack and indirect branch tracking. It is the combination of these two that are designed to address both ROP and JOP class of attacks. […]”
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Discover the Desktop
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
News from coreboot world
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Hastily-written news/info on the firmware security/development communities, sorry for the typos.
Just another WordPress.com site
Hastily-written news/info on the firmware security/development communities, sorry for the typos.