A Study of Overflow Vulnerabilities on GPUs

A Study of Overflow Vulnerabilities on GPUs
Bang Di, Jianhua Sun, Hao Chen

GPU-accelerated computing gains rapidly-growing popularity in many areas such as scientific computing, database systems, and cloud environments. However, there are less investigations on the security implications of concurrently running GPU applications. In this paper, we explore security vulnerabilities of CUDA from multiple dimensions. In particular, we first present a study on GPU stack, and reveal that stack overflow of CUDA can affect the execution of other threads by manipulating different memory spaces. Then, we show that the heap of CUDA is organized in a way that allows threads from the same warp or different blocks or even kernels to overwrite each other’s content, which indicates a high risk of corrupting data or steering the execution flow by overwriting function pointers. Furthermore, we verify that integer overflow and function pointer overflow in struct also can be exploited on GPUs. But other attacks against format string and exception handler seems not feasible due to the design choices of CUDA runtime and programming language features. Finally, we propose potential solutions of preventing the presented vulnerabilities for CUDA.



Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s